# Combining Diffusion And Jump Size Variances 

Gary Schurman MBE, CFA

March 2021

In a jump diffusion equation for stock price both the expected return and jump size are normally-distributed random variables with a mean and a variance. In this white paper we will combine the variances associated with expected return and jump size into one normally-distributed random variable. We do this so that we can use the BlackScholes option pricing model when pricing options on jump diffusion processes. To that end we will work through the following hypothetical problem...

## Our Hypothetical Problem

We are tasked with building a model to forecast ABC Company stock price given the following go-forward model assumptions...

Table 1: Go-Forward Model Assumptions

| Symbol | Description | Value |
| :---: | :--- | ---: |
| $S_{0}$ | Stock price at time zero (\$) | 20.00 |
| $\mu$ | Expected return mean (\%) | 12.50 |
| $\sigma$ | Expected return volatility (\%) | 35.00 |
| $\omega$ | Jump size mean (\%) | 3.50 |
| $v$ | Jump size volatility (\%) | 10.00 |
| $\lambda$ | Average number of annual jumps (\#) | 3.00 |
| $t$ | Time in years (\#) | 4.00 |

Our task is to answer the following questions...
Question 1: What is random stock price at the end of year 4 given that there were $\mathrm{k}=10$ jumps drawn from a Poisson distribution and $\mathrm{z}=-1.20$ drawn from a normal distribution.

Question 2: What is expected conditional stock price at the end of year 4 given that there were 10 jumps over the time period $[0,4]$ ?

Question 3: What is expected unconditional stock price at the end of year 4?

## An Equation For Combined Variance

We defined the independent normally-distributed random variables $x$ and $y$ with the following means and variances...

$$
\begin{equation*}
x \sim N[0,1] \ldots \text { and } \ldots y \sim N[0,1] \tag{1}
\end{equation*}
$$

Because the random variables $x$ and $y$ in Equation (1) above are standardized, independent and normallydistributed, we can make the following statements as to expectations...

$$
\begin{equation*}
\mathbb{E}[x]=0 \quad \ldots \text { and } \ldots \mathbb{E}\left[x^{2}\right]=1 \ldots \text { and } \ldots \mathbb{E}[y]=0 \ldots \text { and } \ldots \mathbb{E}\left[y^{2}\right]=1 \ldots \text { and... } \mathbb{E}[x y]=0 \tag{2}
\end{equation*}
$$

Using Equations (1) and (2) above we defined the jump diffusion equation for conditional random stock price as follows... [2]

$$
\begin{equation*}
S(k)_{t}=S_{0} \operatorname{Exp}\left\{\mu t-\lambda \omega t+k \ln (1+\omega)-\frac{1}{2} \sigma^{2} t-k \frac{1}{2} v^{2}+\sigma \sqrt{t} x+v \sqrt{k} y\right\} \tag{3}
\end{equation*}
$$

Because the random variables $x$ and $y$ in Equation (3) above are normally-distributed then the following function $f(x, y)$ is also normally-distributed...

$$
\begin{equation*}
f(x, y)=\sigma \sqrt{t} x+v \sqrt{k} y \quad \ldots \text { and } . . . f(x, y) \sim N[\text { mean, variance }] \tag{4}
\end{equation*}
$$

Using Equation (2) above the equation for the first moment of Equation (4) above is...

$$
\begin{align*}
\mathbb{E}[f(x, y)] & =\mathbb{E}[\sigma \sqrt{t} x+v \sqrt{k} y] \\
& =\sigma \sqrt{t} \mathbb{E}[x]+v \sqrt{k} \mathbb{E}[y] \\
& =0 \text {...because } \ldots \mathbb{E}[x]=0 \ldots \text { and... } \mathbb{E}[y]=0 \tag{5}
\end{align*}
$$

Using Equation (2) above the equation for the second moment of Equation (4) above is..

$$
\begin{align*}
\mathbb{E}\left[f(x, y)^{2}\right] & =\mathbb{E}\left[\sigma^{2} t x^{2}+v^{2} k y^{2}+2 \sigma \sqrt{t} v \sqrt{k} x y\right] \\
& =\sigma^{2} t \mathbb{E}\left[x^{2}\right]+v^{2} k \mathbb{E}\left[y^{2}\right]+2 \sigma \sqrt{t} v \sqrt{k} \mathbb{E}[x y] \\
& =\sigma^{2} t+v^{2} k \ldots \text { because } \ldots \mathbb{E}\left[x^{2}\right]=1 \ldots \text { and... } \mathbb{E}\left[y^{2}\right]=1 \ldots \text { and... } \mathbb{E}[x y]=0 \tag{6}
\end{align*}
$$

Using Equations (5) and (6) above the mean and variance of Equation (4) above are...

$$
\begin{equation*}
\text { mean }=\mathbb{E}[f(x, y)]=0 \ldots \text { and } . . . \text { variance }=\mathbb{E}\left[f(x, y)^{2}\right]-[\mathbb{E}[f(x, y)]]^{2}=\sigma^{2} t+v^{2} k \tag{7}
\end{equation*}
$$

We will define the random variable $z$ to be normally-distributed with mean zero and variance one. Using Equation (7) above we can rewrite Equation (4) above as...

$$
\begin{equation*}
f(x, y)=\text { mean }+\sqrt{\text { variance }} z=0+\sqrt{\sigma^{2} t+v^{2} k} z=\sqrt{\sigma^{2} t+v^{2} k} z \ldots \text { where } \ldots z \sim N[0,1] \tag{8}
\end{equation*}
$$

## Stock Price Equations

Using Equation (8) above we can rewrite conditional random stock price Equation (3) above as...

$$
\begin{equation*}
S(k)_{t}=S_{0} \operatorname{Exp}\left\{\mu t-\lambda \omega t+k \ln (1+\omega)-\frac{1}{2} \sigma^{2} t-k \frac{1}{2} v^{2}+\sqrt{\sigma^{2} t+v^{2} k} z\right\} \tag{9}
\end{equation*}
$$

We will make the following variable definition...

$$
\begin{equation*}
\text { if... } \hat{\sigma}=\sqrt{\sigma^{2}+\frac{v^{2} k}{t}} \ldots \text { then } \ldots-\frac{1}{2} \hat{\sigma}^{2} t=-\frac{1}{2} \sigma^{2} t-k \frac{1}{2} v^{2} \ldots \text { and... } \hat{\sigma} \sqrt{t}=\sqrt{\hat{\sigma}^{2} t}=\sqrt{\sigma^{2} t+v^{2} k} \tag{10}
\end{equation*}
$$

Using the definitions in Equation (10) above we can rewrite conditional random stock price Equation (9) above as...

$$
\begin{align*}
S(k)_{t} & =S_{0} \operatorname{Exp}\left\{\mu t-\lambda \omega t+k \ln (1+\omega)-\frac{1}{2} \hat{\sigma}^{2} t+\hat{\sigma} \sqrt{t} z\right\} \\
& \left.=S_{0} \operatorname{Exp}\{k \ln (1+\omega)\}\left(\mu-\lambda \omega-\frac{1}{2} \hat{\sigma}^{2}\right) t+\hat{\sigma} \sqrt{t} z\right\} \\
& =S_{0}(1+\omega)^{k} \operatorname{Exp}\left\{\left(\mu-\lambda \omega-\frac{1}{2} \hat{\sigma}^{2}\right) t+\hat{\sigma} \sqrt{t} z\right\} \tag{11}
\end{align*}
$$

We will make the following variable definition...

$$
\begin{equation*}
\text { if... } \theta=\left(\mu-\lambda \omega-\frac{1}{2} \hat{\sigma}^{2}\right) t+\hat{\sigma} \sqrt{t} z \ldots \text { then... } \theta \sim N\left[\left(\mu-\lambda \omega-\frac{1}{2} \hat{\sigma}^{2}\right) t, \hat{\sigma}^{2} t\right] \tag{12}
\end{equation*}
$$

Using Equation (12) above we can rewrite conditional random stock price Equation (11) above as...

$$
\begin{equation*}
S(k)_{t}=S_{0}(1+\omega)^{k} \operatorname{Exp}\{\theta\} \tag{13}
\end{equation*}
$$

Given that the variable $\theta$ in Equation (13) above is normally-distributed then the exponential of $\theta$ is $\operatorname{lognormally-}$ distributed. Using Equations (12) and (13) above the equation for expected conditional stock price at time $t$ is...

$$
\begin{align*}
\mathbb{E}\left[S(k)_{t}\right] & =\mathbb{E}\left[S_{0}(1+\omega)^{k} \operatorname{Exp}\{\theta\}\right] \\
& =S_{0}(1+\omega)^{k} \operatorname{Exp}\left\{\text { mean }+\frac{1}{2} \text { variance }\right\} \\
& =S_{0}(1+\omega)^{k} \operatorname{Exp}\left\{\left(\mu-\lambda \omega-\frac{1}{2} \hat{\sigma}^{2}\right) t+\frac{1}{2} \hat{\sigma}^{2} t\right\} \\
& =S_{0}(1+\omega)^{k} \operatorname{Exp}\{\mu t-\lambda \omega t\} \tag{14}
\end{align*}
$$

Using Equation (14) above the equation for expected unconditional stock price at time $t$ is... [1]

$$
\begin{equation*}
\mathbb{E}\left[S_{t}\right]=\sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} \operatorname{Exp}\{-\lambda t\} \mathbb{E}\left[S(k)_{t}\right]=S_{0} \operatorname{Exp}\{\mu t\} \tag{15}
\end{equation*}
$$

## The Answers To Our Hypothetical Problem

Question 1: What is random stock price at the end of year 4 given that there were $\mathrm{k}=10$ jumps drawn from a Poisson distribution and $\mathrm{z}=-1.20$ drawn from a normal distribution.

Using Equation (10) above and the data in Table 1 above the equation for combined volatility is...

$$
\begin{equation*}
\hat{\sigma}=\sqrt{\sigma^{2}+\frac{v^{2} k}{t}}=\sqrt{0.35^{2}+\frac{0.10^{2} \times 10}{4}}=0.38406 \tag{16}
\end{equation*}
$$

Using Equations (11) and (16) above and the data in Table 1 above the answer to the question is...

$$
\begin{equation*}
S(10)_{4}=20.00 \times(1+0.035)^{10} \times \operatorname{Exp}\left\{\left(0.125-3 \times 0.035-\frac{1}{2} \times 0.38406^{2}\right) \times 4+0.38406 \times \sqrt{4} \times-1.2\right\}=9.05 \tag{17}
\end{equation*}
$$

Question 2: What is expected conditional stock price at the end of year 4 given that there were 10 jumps over the time period $[0,4]$ ?

Using Equation (14) above and the data in Table 1 above the answer to the question is...

$$
\begin{equation*}
\mathbb{E}\left[S(10)_{4}\right]=20.00 \times(1+0.035)^{10} \times \operatorname{Exp}\{0.125 \times 4-3 \times 0.035 \times 4\}=30.56 \tag{18}
\end{equation*}
$$

Question 3: What is expected unconditional stock price at the end of year 4?
Using Equation (15) above and the data in Table 1 above the answer to the question is...

$$
\begin{equation*}
\mathbb{E}\left[S_{4}\right]=20.00 \times \operatorname{Exp}\{0.125 \times 4\}=32.97 \tag{19}
\end{equation*}
$$

## References

[1] Gary Schurman, The Compensated Poisson Process, March, 2021.
[2] Gary Schurman, A Jump Diffusion Model For Stock Price, March, 2021.

